

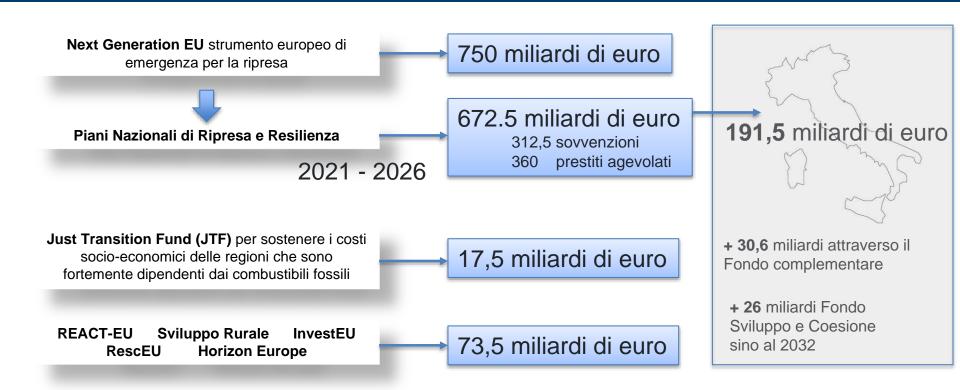
Officine PNRR: investimenti e opportunità per un sistema infrastrutturale più moderno, digitale e green

Scenari, tecnologie e accumuli per la mobilità sostenibile

Roma, 12 Ott 2022

Antonino Genovese Laboratorio Sistemi e Tecnologie per la Mobilità Sostenibile

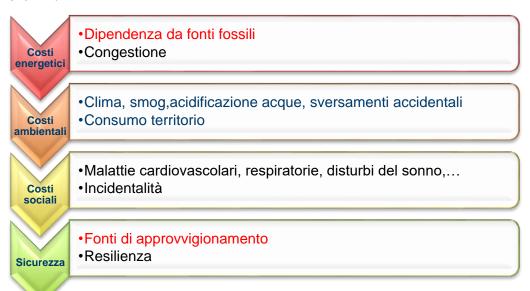
II Green Deal


Una nuova strategia europea per lo sviluppo sostenibile

«Per conseguire la neutralità climatica è necessario ridurre le emissioni prodotte dai trasporti del 90 % entro il 2050»

«Entro il 2025 sarà necessario circa 1 milione di stazioni di ricarica e rifornimento pubbliche per i 13 milioni di veicoli a basse e a zero emissioni previsti sulle strade europee»

Strumenti finanziari



Un modello inadeguato?

62.5% degli spostamenti su auto nel 2019

ISFORT 2021

Cambiamenti che consumano territorio, alterano il volto urbanistico ed inducono effetti sull'aggregazione sociale plasmando un nuovo modello di rapporto tra uomo e territorio.

Verso un nuovo modello della mobilità

Il modello A - S - I: **Avoid Shift Increase**

Ridurre/evitare viaggi

Migliorare l'efficienza dei veicoli

Spostamento su modi di trasporto più efficienti

Assetto urbanistico, home working, lavoro flessibile, e-commerce,....

Veicoli ibridi, EV, H2

TPL, bike, condivisione, ride sharing, servizi a chiamata

Innovazione tecnologica

Elementi del PNRR per la Mobilità Sostenibile

Proposte di Nuove e Razionali idee per il Rinnovo della mobilità

Primi passi per la sostenibilità dei trasporti

M2C2 - ENERGIA RINNOVABILE, IDROGENO, RETE E MOBILITA' SOSTENIBILE

3. Promuovere la produzione, la distribuzione e gli usi finali dell'idrogeno	3,19
Investimento 3.1: Produzione in aree industriali dismesse	0,50
Investimento 3.2: Utilizzo dell'idrogeno in settori hard-to-abate	2,00
Investimento3.3:Sperimentazionedell'idrogenoperiltrasportostradale	0,23
Investimento3.4:Sperimentazionedell'idrogenoperiltrasportoferroviario	0,30
Investimento 3.5: Ricerca e sviluppo sull'idrogeno	0,16
Riforma 3.1: Semplificazione amministrativa e riduzione degli ostacoli normativi alla diffusione dell'idrogeno	-
Riforma 3.2: Misure volte a promuovere la competitività dell'idrogeno	-

4. Sviluppare un trasporto locale più sostenibile
Investimento 4.1: Rafforzamento mobilità ciclistica
Investimento 4.2: Sviluppo trasporto rapido di massa
Investimento 4.3: Sviluppo infrastrutture di ricarica elettrica
Investimento 4.4: Rinnovo flotte bus e treni verdi
Riforma 4.1: Procedure più rapide per la valutazione dei progetti nel settore dei sistemi di trasporto pubblico locale con impianti fissi e nel settore del trasporto rapido di massa

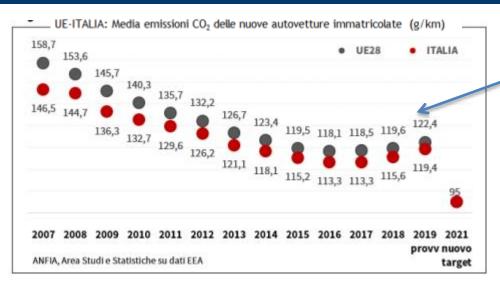
5. Sviluppare una leadership Internazionale Industriale e di ricerca e sviluppo nelle principali filiere della transizione

Investimento 5.1: Rinnovabili e batterie

Investimento 5.2: Idrogeno

Investimento 5.3: Bus elettrici

Investimento 5.4: Supporto a start-up e venture capital attivi nella transizione ecologica


0,25

0.60

3.60

Il nuovo corso della mobilità

2019/631 Regolamento (EU) definisce i nuovi limiti di emissione medi di CO2 per i nuovi autoveicoli e i LDV a partire dal 2020, 2025 e 2030.

2021	2025	2030	2035
95 gCO2 /km	81 gCO2 /km	59 gCO2 /km	0 gCO2 /km

Aumento delle emissioni specifiche medie nel 2018-19:

- incremento massa veicoli
- minor quota dei veicoli diesel

Aggiornamento strategie del settore automotive per l'elettrificazione

Tre punti chiave per l'elettrificazione

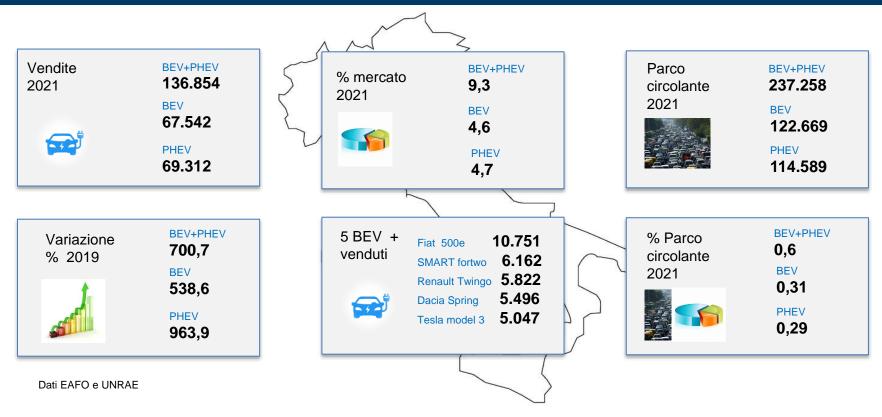
- Diffusione dell'infrastruttura di ricarica
- Produzione batterie
- Produzione di energia rinnovabile

Un mercato in sviluppo

2021 58,2 milioni di passenger car

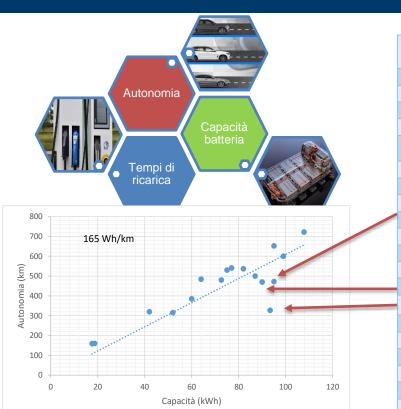
6,75 milioni di passenger cars e light duty vehicle elettrici (BEV & PHEV)= 8.3%

Lo stock di tali veicoli elettrici a fine 2021 è oltre 16,5 milioni


11,77 milioni di passenger car

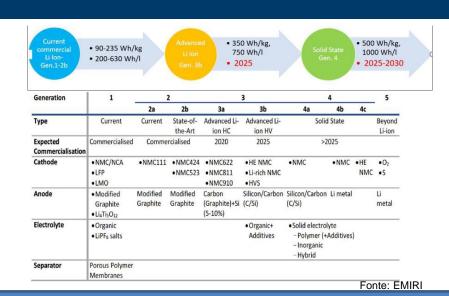
2.26 milioni di passenger cars elettriche (BEV & PHEV)= 19.2%

Lo stock di tali veicoli elettrici a fine 2021 è circa 3.48 milioni



L'elettrico in Italia

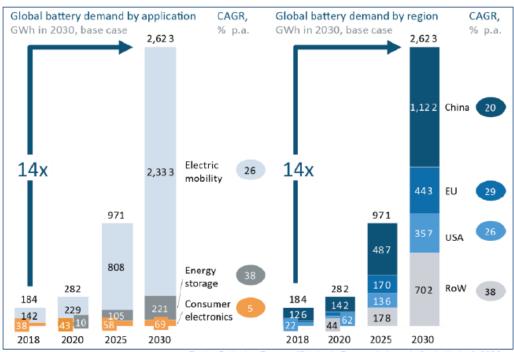
Autonomia e capacità batteria : legame indissolubile



	Modello	Capacità batteria	Autonomia	Consumo	СВі	Pmax modo 4
		kWh	km	Wh/km	kW	kW
	Tesla Model S	95	652	145,7	16.5	_
	Mercedes EQS	107,8	722	149,3	7,4/11,4	200
	Ford Mustang Mach E	99	600	165,0	7,4/11,4	150
	Tesla Model 3	75	530	141,5	7,4/11,4	250
	VW ID.3 Tour	77	541	142,3	7,4/11,4	125
	Skoda Enyaq 80	82	537	152,7	7,4/11,4	125
1	Audi Q4 e-tron 55	95	472	201,3	22	150
	Nissan Ariya 87	87	500	174,0	22	130
	Hyunday Kona	64	484	132,2	7,4/11,4	100
	Hyunday Ioniq 5	72,6	480	151,3	7,4/11,4	220
	Jaguar I-Pace	90	470	191,5	7,4/11,4	104
	Porsche Taycan 4S	93,4	327	285,6	7,4/11,4	225
	Nissan Leaf	60	385	155,8	7,4	100
	Fiat 500e	42	320	131,3	7,4/11,4	85
	Smart fortwo	17,6	159	110,7	22	_
	Renault Zoe 52	52	315	165,1	22	46
	Vwe- up	18,7	160	116,9	3,7	40

Roadmap tecnologica delle batterie

Tecnologia corrente: Tecnologie in sviluppo:


batterie al litio

batterie al litio di tipo avanzato con elettrolita allo stato liquido batterie al litio di tipo avanzato con elettrolita allo stato solido batterie al litio-zolfo, batterie litio-aria

batterie post-litio (Na-ione)

Domanda di batterie

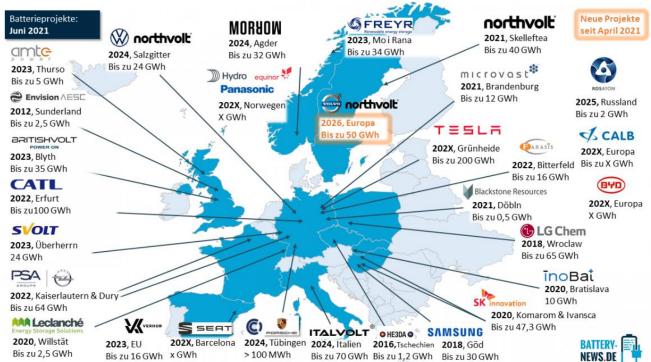
Fonte: Batteries Europe, "Strategic Research Agenda for batteries", 2020

Previsioni nello scenario base

- 2025: ~ 1.000 GWh/y
- 2030: > 2.600 GWh/y
 - 14X rispetto 2018
- Europa: 17% della domanda globale

Caratteristiche delle batterie sostenibili

- prodotte con basso impatto ambientale
- materiali ottenuti nel pieno rispetto di standard sociali ed ecologici
- lunga vita
- sicure
- riparabili, riutilizzabili, ridestinabili, riciclabili



Lo sviluppo delle Gigafactories

Al 2025 in Europa si prevede una capacità produttiva di batterie posizionata intorno a 600 GWh grazie all'entrata in funzione di 25 Gigafactories

Punti di ricarica in Italia

TIPOLOGIA	POTENZE	PUNTI	% (ESCLUSI N.D.)
LENTA O SLOW	≤ 3,7 (AC)	4.096	15,9%
	3,7 < P ≤ 7 (AC)	221	0,9%
ACCELERATA O QUICK	7 < P \(22 (AC)	18.944	73,6%
FAST	22 < P 43 (AC)	922	3,6%
	43 < P ≤ 50 (DC)	914	3,6%
ULTRA FAST E HIGH POWER CHARGERS	50 < P ≤150 (DC)	381	1,5%
	P > 150 (DC)	254	1,0%
n.d.		292	
TOTALE		26.024	

Fonte: Motus-e

Punti di sosta a lungo termine: parcheggi di scambio, parcheggi di sosta notturna

Punti di sosta a breve-medio termine: parcheggi di centri commerciali, uffici pubblici, centri di interesse

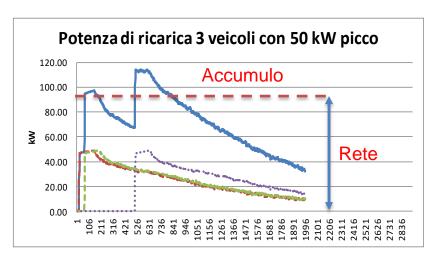
Ove esiste l'esigenza di un rapido rifornimento anche parziale: strade di grande comunicazione, servizi TPL, trasporto pesante

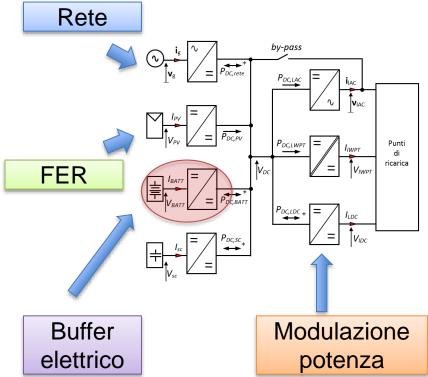
Ricarica ultrafast e High Power

Ricaricare in pochi minuti?

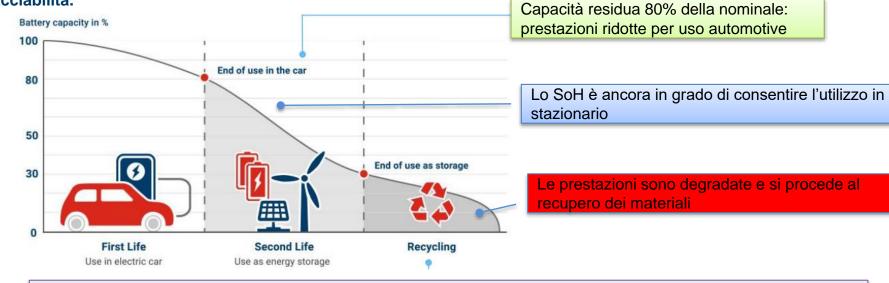
- -Batteria idonea per la ricarica ad alta potenza
- -Batteria in ottime condizioni
- -Temperatura entro finestra controllata
- -Carica entro il SOC 80% (riduzione della potenza per valori superiori)
- Aumento della tensione di batteria
- Raffreddamento connettori e cavo
- Nuovi standard 1.250 volt & 3.000 ampere

Megawatt Charging System
1250 V 3000 A 3.75 MW





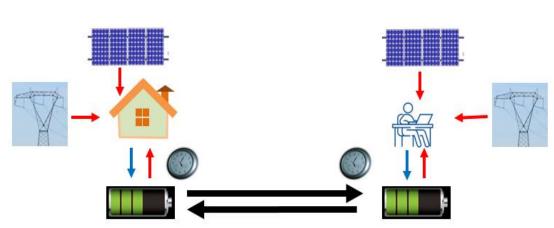
La mitigazione degli impatti sulla rete



Uso, riuso e riciclo: sicurezza e tracciabilità

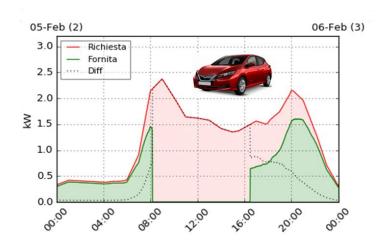
Il Parlamento europeo sta lavorando all'aggiornamento della <u>Direttiva sulle batterie</u>. La finalità, è quella di garantire che al termine del loro ciclo di vita, le batterie possano essere riutilizzate o riciclate in totale sicurezza e tracciabilità.

Il riuso ed il recupero dei materiali contribuiranno a ridurre la domanda di materie prime riducendo l'impatto sul territorio



V2H

Crescita della fonte rinnovabile non programmabile residenziale distribuita



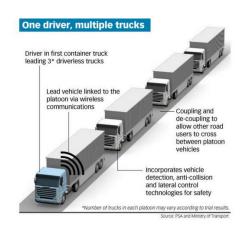
Incrementare l'autoconsumo

- Incrementa l'autoconsumo a casa
- Offre servizio di alimentazione a supporto dei consumi domestici
- Virtual storage tramite aggregatore

Azione di pompaggio anche quando il veicolo non sosta a casa

Incrementa l'autoconsumo sul posto di lavoro

Veicoli a Guida Autonoma


Il TPL è considerato uno dei candidati più idonei alla guida automatizzata

Attualmente in sperimentazione ed uso in aree limitate e protette (servizi di primo ed ultimo miglio)

Potenzialità di integrazione nei servizi a bassa domanda con servizi a chiamata

Possibile estensione al platooning

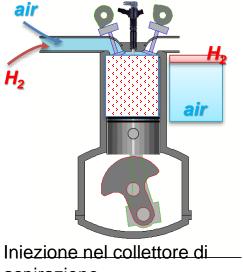
L'idrogeno nei trasporti

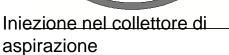
L'idrogeno è un vettore energetico utile a sostenere il processo di decarbonizzazione dei trasporti nei settori in cui l'elettrificazione con le batterie non è vantaggiosa, quali il trasporto pesante stradale, il ferroviario ed il navale.

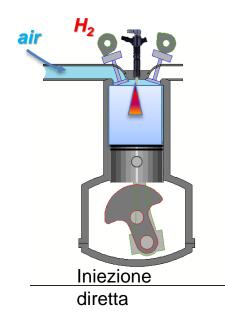
Questo è possibile grazie alle *celle a combustibile* (o Fuel Cell) al cui interno, l'idrogeno reagendo con l'ossigeno presente nell'aria, genera una corrente elettrica.

Un confronto

L'uso dell'idrogeno attraverso le FC *non produce* sostanze inquinanti avendosi solo acqua come risultato della reazione elettrochimica e le emissioni di gas climalteranti sono dipendenti dall'*impronta carbonica* del ciclo di produzione dell'idrogeno.




I tempi di rifornimento dei veicoli ad idrogeno sono comparabili con quelli dei veicoli convenzionali.



H2 e MCI

L'idrogeno è anche un ottimo combustibile che mostra una maggiore velocità di combustione (fino ad 10 volte) ed una minore energia di ignizione (0.02 mJ vs. 0.29 mJ) rispetto al metano.

Anche in questo caso combustione dell'idrogeno genera acqua, ma la presenza dell'azoto nell'aria produce emissioni di ossidi di azoto. Questi possono essere controllati ed abbattuti grazie a tecniche già impiegate nei motori convenzionali (EGR, smagrimento dispositivi miscela, post trattamento).

Idrogeno come fuel

- Zero emissioni al punto uso (se FC)
- Disponibilità abbondante via elettrolisi
- Elevata autonomia (oltre 600 km)
- Rifornimento veloce (3-7 min)
- Zero rumore (se FC)

- Efficienza WTW non elevata
- Infiammabilità elevata
- Carenza di infrastrutture
- Costo

La frontiera della mobilità urbana

Quando la fantascienza diviene scienza... nella speranza di non congestionare anche il cielo

